spectral parameters by these ligand sets at a single subsite.

Of all native clusters, the "P-clusters" of nitrogenase are the best candidates for non-cysteinate or otherwise unconventional terminal ligation. Their properties, which are consistent with but do not necessarily prove the Fe_4S_4 cubane-type formulation, are summarized elsewhere.^{12,62} Following the usual practice, we adopt this formulation. Briefly, the clusters exhibit redox couple 4;

$$S = 0 \xrightarrow{-0.47 \text{ V}} S = 5/2 \qquad (4)$$

 $\delta (\Delta E_0) = 0.55 (3.03) \text{ mm/s} (unique subsite)$

 δ (ΔE_0) = 0.51-0.52 (0.68-1.33) mm/s (other subsites)

the P^{OX} form is reduced at the indicated potential $E_0^{\prime,63}$ The clusters occur as two slightly inequivalent pairs whose P^N forms have the Mössbauer parameters⁶⁴ given. Isomer shifts for all subsites are nearly the same, but one subsite is unique because of the large quadrupole splitting, which is closely comparable to that of tetrahedral $Fe^{II}S_4$ units.

Given the diamagnetic ground state of P^N , the two possible redox couples are $[Fe_4S_4]^{+/0}$ and $[Fe_4S_4]^{3+/2+}$ (Figure 10). The redox potential is too low for a normal 3+/2+ reaction, and much too high for the +/0 couple based on analogue data.¹² The first

(65) Smith, B. E.; Lowe, D. J.; Chen, G.-X.; O'Donnell, M. J.; Hawkes, T. R. Biochem. J. 1983, 209, 207.

couple could be displaced to lower values by binding of two negative ligands at one or more subsites as in 10-14, and isomer shifts could be raised to the observed values by increased coordination numbers at the subsites. With the +/0 couple, isomer shifts are entirely consistent with a $[Fe_4S_4]^0$ core of a $Fe_4S_4(S \cdot Cys)_4$ cluster, as is the observation of a transient g = 1.94-type EPR spectrum corresponding to an unstable $S = \frac{1}{2}$ [Fe₄S₄]⁺ species produced during oxidation. Unless the redox step is proton-linked (by, e.g., protonation of the all-ferrous core) or is subject to some special protein environmental effect, it is not clear what displaces the potential upward to the observed value. With either couple, it is also difficult to understand how one subsite of the P^N form can be differentiated from the other three by a much larger quadrupole splitting. Indeed, we have yet to produce any Fe_4S_4 cluster with a quadrupole splitting as large as 3 mm/s.

In order to accommodate simultaneously the redox potential, ground spin states, and Mössbauer parameters of P-clusters, departure from the ligation mode of a classical $Fe_4S_4(S \cdot Cys)_4$ cluster appears to be required. The results presented here provide the first comprehensive study of the effects of non-standard terminal ligation in $[Fe_4S_4]^{2+}$ clusters. To provide a more detailed account of these effects, this work is being expanded to oxidized clusters [Fe₄S₄]³⁺ whose potential accessibility in the set 10-14 and with other clusters in dichloromethane solution has already been noted.

Acknowledgment. This research was supported by NIH Grant GM 28856, and by the National Science Foundation at M.I.T. G.C.P. acknowledges support by the Office of Naval Research program on Cluster Science and Dynamics under Contract No. N00014-89-J-1779.

η^3 -MeC(CH₂PPh₂)₃/Rhodium Complexes Utilize Phosphine Arm Dissociation Mechanisms at 25 °C

Eric G. Thaler, Kirsten Folting, and Kenneth G. Caulton*

Contribution from the Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Indiana 47405. Received October 11, 1989

Abstract: Reaction of RhMe₃(triphos) (triphos = MeC(CH₂PPh₂)₃) with CO generates acetone and RhMe(CO)(triphos), which reacts with further CO to give Rh[C(O)Me](CO)(triphos). The structure of RhMe(CO)(triphos) shows one strained P-Rh-P bond angle between equatorial ligands (90.80 (5)°) in a trigonal bipyramid, together with intramolecular steric effects that cause a small equatorial $CO-Rh-axial(CH_3)$ C/C angle of 79.09 (25)°. The acetyl and methyl complexes react with H₂ at 25 °C to produce acetaldehyde and methane, respectively, together with RhH(CO)(triphos). Reaction of CO with RhH_3 (triphos) is even faster than with $RhMe_3$ (triphos) to give H_2 and RhH(CO) (triphos), together with a CO hydrogenation product. These results show that these clean stoichiometric conversions, as well as a variety of isotopic exchange reactions of the Rh(I) and Rh(III) compounds with D₂ and ¹³CO, occur by preequilibrium dissociation of one arm of the triphos ligand at 25 °C. One such species, $Rh[C(O)Me](CO)_2(\eta^2$ -triphos), is directly detectable and reveals the mechanism of exchange of Rh[C(O)Me](13 CO)(triphos) with 12 CO. The coordination of CO to Rh(H)₃(η^2 -triphos) is proposed to generate a dihydrogen complex, thus accounting for the CO-induced elimination of H₂. As suggested by these individual reactions, RhH(CO)(triphos) is a catalyst for olefin hydroformylation. The high n: iso selectivity mimics that of RhH(CO)(PPh₃)₃ in the presence of a large amount of added PPh₃, a beneficial consequence of the chelate effect.

We have been examining the polyhydride and polymethyl chemistry of iridium(III) with monodentate phosphine ligands.¹⁻³ When we attempted to compare these results with the analogous rhodium compounds, the outcome was obscured by phosphine redistribution (eq 1).⁴ We reasoned that this problem might be $RhMe_2(PMe_2Ph)_3BF_4 + CO \rightarrow$ $Me_2CO + [Rh(PMe_2Ph)_4]BF_4 + ... (1)$

avoided if we employed the tridentate phosphine $MeC(CH_2PPh_2)_3$, "triphos". In addition to "tight" binding (i.e., retention) of phosphine due to the chelate effect, the imposed facial stereochemistry of this ligand was anticipated to have major influence

0002-7863/90/1512-2664\$02.50/0 © 1990 American Chemical Society

⁽⁶²⁾ Orme-Johnson, W. H. Annu. Rev. Biophys. Biophys. 1985, 14, 419.
(63) Watt, G. D.; Wang, Z.-C. Biochemistry 1986, 25, 5196.
(64) McLean, P. A.; Papaefthymiou, V.; Orme-Johnson, W. H.; Münck, J. Biol. Chem. 1987, 262, 12900.

⁽¹⁾ Lundquist, E. G.; Thaler, E. G.; Caulton, K. G. Polyhedron 1989, 8, 2689.

 ⁽²⁾ Rhodes, L. F.; Caulton, K. G. J. Am. Chem. Soc. 1985, 107, 259.
 (3) Alvarez, D.; Caulton, K. G. Polyhedron 1988, 7, 1285.

⁽⁴⁾ Lundquist, E. G.; Streib, W. E.; Caulton, K. G. Inorg. Chim. Acta 1989, 159, 23.

on reaction mechanisms because the quasi-tetrahedral intermediate (triphos)RhX (X = H or Me) would be destabilized; the d⁸ electron configuration is more stable when planar. Thus, new reaction products and mechanisms might be expected for tridentate in comparison to monodentate phosphines.

Since our interest was in exploring the comparative reactivity of the two prototypical one-electron ligands hydride and methyl, we selected for study RhH₃(triphos) and RhMe₃(triphos). Both are found to react readily (25 °C). Because the commercial application of RhH(CO)(PPh₃)₃ to catalyze olefin hydroformylation shows improved normal/iso ratios for aldehydes in the presence of a large excess of added PPh₃, we have studied briefly the influence of the chelate effect of triphos on hydroformulation catalysis.

Throughout this paper, we use "triphos" to indicate the ligand coordinated in a η^3 fashion.

Experimental Section

General Procedures. Pentane, tetrahydrofuran, benzene, and toluene were all dried and distilled prior to use from solutions containing sodium/potassium benzophenone ketyl. Methylene chloride was refluxed over P_2O_5 and distilled prior to use. The gases H_2 (Ultra High Purity, Air Products), CO (Ultra High Purity, Air Products), ²H₂ (C.P. Grade, Linde), and ¹³CO (99% ¹³C, Monsanto) were used as received. MeLi was purchased from Aldrich. RhH₃(triphos) was prepared as previously reported.5 NMR spectra were recorded on a Bruker AM-500 or a Nicolet NT-360 spectrometer. Infrared spectra were recorded on a Perkin-Elmer 283 grating spectrometer. Gas chromatography was accomplished with a Varian Model 3700 gas chromatograph with a J&W DB-5 (0.25 μ M) 30-m fused-silica capillary column. The following abbreviations are used: d (doublet), t (triplet), m (multiplet), FPT (freeze-pump-thaw), wd (full width at half-height).

Synthesis of RhCl₃(triphos) (triphos = $CH_3C[CH_2P(C_6H_5)_2]_3$). Rh-Cl₃·3H₂O (1.25 g, 4.75 mmol) was added to triphos (3 g, 4.75 mmol) dissolved in THF (75 mL). This mixture was then refluxed for 1 h, after which time the solution was cooled and EtOH⁶ (20 mL) was added to raise the reflux temperature and help solubilize the rhodium salt. The reaction mixture was again refluxed with stirring, this time for 7 h (until no dark red crystals of RhCl₃·3H₂O were noticeable in the bottom of the reaction mixture when it was allowed to stand ($\sim 1 \text{ min}$) without stirring). The light yellow microcrystalline precipitate was then collected by filtration, washed with EtOH $(2 \times 15 \text{ mL})$, and dried in vacuo to yield RhCl₃(triphos)⁷ (2.55 g). The homogeneous yellow filtrate was then stripped in vacuo, and the resulting yellow-green residue was extracted with CH_2Cl_2 (2 × 20 mL) and filtered through a medium-porosity frit to yield a deep yellow solution, which was then reduced in volume to 5 mL. To this solution was added pentane (40 mL) to precipitate a pale yellow solid and a brown gum. After 7 h of stirring, all that remained was a pale yellow precipitate, which was collected by filtration, washed with pentane (2 \times 15 mL), and dried in vacuo to yield a second batch of RhCl₃(triphos) (1.33 g). Combined yield 3.86 g (96%). ¹H NMR (360 MHz, CD₂Cl₂, 22 °C): δ 1.59 (unresolved q, $J_{PH} = 2$ Hz, CCH₃), 2.6 (d, $J_{PH} = 1.5$ Hz, PCH₂). ³¹P NMR (146 MHz, CD₂Cl₂, 22 °C): δ 9.5 (d, $J_{\rm RhP}$ = 104 Hz).

RhMe₃(triphos). To RhCl₃(triphos) (0.63 g, 0.76 mmol) in THF (60 mL), with stirring at 0 °C, was added MeLi in Et_2O (1.4 M, 4.2 mL, 5.88 mmol). The reaction mixture was stirred at 0 °C for 3.5 h, during which time the solution changed from orange to a very pale yellow. The reaction mixture was maintained at 0 °C and slowly (dropwise) hydrolyzed with wet THF (until gas evolution ceased), leaving a dark brown solution. The volatiles were then removed in vacuo, and the remaining gray-white solid was extracted with CH_2Cl_2 (70 mL) and filtered to yield a homogeneous yellow-brown solution. This was then reduced in volume (15 mL) until large amounts of a white precipitate (RhMe₃(triphos)) were present. The product was collected by filtration and dried in vacuo. Yield 0.44 g (75%). ¹H NMR (360 MHz, CD_2Cl_2 , 22 °C): δ 0.311 (second-order m, 9 H, RhMe), 1.4 (unresolved q, $J_{PH} = 7$ Hz, CCH₃),

Table I. Crystallographic Data for MeC(CH₂PPh₂)₃Rh(CH₃)CO

		(22) 3(3)	
chem formula	C43H42OP3Rh	space group	P21
a, Å	10.205 (1)	T, ℃	-141
b, Å	17.520 (2)	λ, Å	0.71069
c, Å	10.498 (1)	$\rho_{\rm calcd}, {\rm g \ cm^{-3}}$	1.442
β , deg	108.93 (0)	μ (Mo K α), cm ⁻¹	6.39
V, Å ³	1775.31	R	0.0402
Z	2	R _w	0.0396
formula wt	770.63		
		·····	

2.35 (d, $J_{PH} = 4$ Hz, 6 H, CH₂P), 7.6-7.2 (30 H, phenyl H). ³¹P{¹H} NMR (146 MHz, CD_2Cl_2 , 22 °C): δ -2.25 (d, J_{PRh} = 75 Hz).

Reaction of RhMe₃(triphos) with H₂. RhMe₃(triphos) (0.027 g, 0.03 mmol) was placed in $C_6 D_6$ (0.4 mL) and transferred to an NMR tube. The solution was then degassed (FPT, three cycles) and placed under H₂ (1 atm). The tube was then submerged in liquid N_2 to reduce the pressure and the tube was flame sealed. Monitoring this reaction by ¹H NMR showed, after 2 h, significant production of RhH₃(triphos),⁵ methane (δ 0.149), and a trace amount of ethane (δ 0.791). The ¹H NMR intensities of CH_4 to C_2H_6 integrated 8:1. After 16 h, ¹H NMR revealed a 50:50 mixture of RhMe₃(triphos) and RhH₃(triphos).

Reaction of RhMe₃(triphos) with CO. (a) RhMe₃(triphos) (0.2 g, 0.26 mmol) was dissolved in CH₂Cl₂⁸ (10 mL) and placed in a high-pressure reaction vessel of local construction. The vessel was then charged with CO (1600 psi), and the reaction mixture was allowed to stir for 24 h. The CO pressure was then released, and the homogeneous yellow solution was transferred to a Schlenk flask. The volatiles were removed in vacuo to yield a pale yellow solid.⁹ Yields are quantitative by ¹H and ³¹P NMR. ¹H NMR (360 MHz, CD₂Cl₂, 22 °C) for Rh[C(O)CH₃](CO)(triphos): δ 1.57 (s, 3 H, CCH₃), 2.14 (d, J_{RhH} = 1.5 Hz, 3 H, C(O)CH₃](CO(H)phds). (d, J_{PH} = 7.6 Hz, 6 H, CH₂P), 7.4–7.0 (30 H, phenyl H). ³¹P{¹H} NMR (146 MHz, CD₂Cl₂, 22 °C): δ 4.9 (br d, J_{Rh} = 112 Hz). ³¹P{¹H} NMR (-90 °C): 16 (dt, J_{PRh} = 72 Hz, J_{PP} = 42 Hz, 1 P), 0.7 (dd, J_{PRh} = 132 Hz, 2 P). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 22 °C, natural abundance) Hz, 2 P). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 22 °C, natural abundance) δ 208 (dq, J_{RhC} = 82 Hz, J_{PC} = 15 Hz, RhCO), 258 (dq, $J_{RhC} \simeq J_{PC} \simeq$ 24 Hz, RhC(O)CH₃). IR (CH₂Cl₂): 1890 and 1600 cm⁻

(b) RhMe₃(triphos) (0.04 g, 0.05 mmol) was dissolved in a minimum amount of CD_2Cl_2 and placed in an NMR tube. The tube and its contents were then degassed (FPT, three cycles) and placed under CO (1 atm). The solution was then cooled to -196 °C and the tube was flame sealed. Upon thawing of the sample, no visible change was noted. Monitoring the reaction by ¹H NMR showed significant (20%) production of Rh[C(O)CH₃](CO)(triphos) after 24 h. Also present was a sharp singlet at 2.11 ppm (acetone). No signals were present in the region expected for ethane (0.84 ppm in CD₂Cl₂).

Rh[¹³C(O)CH₃](¹³CO)(triphos). RhMe₃(triphos) (0.08 g, 0.1 mmol) was placed in $C_6 D_6$ (1 mL). This solution was then placed in a 50-mL Kontes-valved flask, degassed (FPT, three cycles), and placed under ¹³CO (99%, \sim 1 atm). After the originally heterogeneous mixture was stirred for 8 days, the solution was completely homogeneous and pale yellow. ¹H NMR (360 MHz, C₆D₆, 22 °C): δ 1.12 (br s, CCH₃), 1.54 (d, J_{CH} = 5.8 Hz, C(O)CH₃), 2.12 (d, J_{PH} = 7 Hz, 6 H, CH₂P), 7.7-6.75 (P(C₆H₅)₂). ³¹P{¹H} NMR (146 MHz, C₆D₆, 22 °C): δ 5 (br d, J_{PRh} = 110 Hz). ³¹P{¹H} NMR (THF, -95 °C): δ 0.36 (ddd, J_{PRh} = 130 Hz, J_{PP} \simeq J_{PC} \simeq 37 Hz, 2 P), 16 (br m, 1 P). The ¹³C{¹H} NMR spectrum was only slightly broadened compared to that of the unlabeled compound, exhibiting no resolvable C/C coupling.

Rh(Me)(CO)(triphos). Rh[C(O)Me](CO)(triphos) (0.2 g, 0.25 mmol) was dissolved in toluene (40 mL), and the solution was heated to 40 °C. N₂ was bubbled through the solution for 1.5 h while the temperature was maintained at 40 °C. After this time, the volatiles were removed in vacuo to yield a pale orange solid. The ¹H and ³¹P NMR spectra indicated complete conversion to RhMe(CO)(triphos). ¹H NMR (360 MHz, CD₂Cl₂, 22 °C): δ –0.12 (qd, J_{PH} = 4.83 Hz, J_{RbH} = 1.53 Hz, RhCH₃), 1.59 (unresolved q, J_{PH} = 2.3 Hz, CCH₃), 2.35 (d, J_{PH} = 7.25 Hz, CH_2P), 7.7-6.85 ($P(C_6H_5)_2$). ³¹ $P(^1H)$ NMR (146 MHz,

⁽⁵⁾ Geerts, R. L.; Huffman, J. C.; Westerberg, D. E.; Folting, K.; Caulton,

<sup>K. G. New J. Chem. 1988, 12, 455.
(6) Earlier preparations of RhCl₃(triphos), performed in EtOH, gave significantly lower yields (60%). It was felt that some of the Rh was lost through</sup> decarbonylation of EtOH during reflux. The relatively small amount of EtOH used here increases the solubility of RhCl₃·3H₂O in comparison to pure THF and avoids decarbonylation of solvent. Large amounts of EtOH should be avoided.

^{(7) (}a) Ott, J.; Venanzi, L. M.; Ghilardi, C. A.; Midollini, S.; Orlandini,
A. J. Organomet. Chem. 1985, 291, 89. (b) Janser, P.; Venanzi, L. M.;
Bachechi, F. J. Organomet. Chem. 1985, 296, 229.

⁽⁸⁾ Degradation of the hydrides and alkyl compounds occurs over time in CH₂Cl₂. For example, RhMe₃(triphos) forms RhClMe₂(triphos) (¹H NMR (CD₂Cl₂): RhMe₂, δ 0.79, second-order multiplet (br), 2.65–2.5 (CH₂P), 1.5 (CCH₃). ³¹P NMR (CD₂Cl₂, 146 MHz): 41.7 (dt, $J_{PRh} = 147$ Hz, $J_{PP} = 22$ Hz), -19.3 ppm (dd, $J_{PRh} = 68.7$ Hz). Many of the five-coordinate carbonyl complexes yielded [Rh(CO)₂(triphos)]Cl over time in CH₂Cl₂. The five-coordinate compounds degrade much more rapidly (2–3 days) than the outphend size coordinate solution. octahedral six-coordinate species. Tetrahydrofuran is thus a preferred solvent for multiday reactions. (9) The amount of RhMe(CO)(triphos) produced through decarbonylation

of the acyl product varied with varying lengths of time under vacuum in the solid state. Also, vacuum removal of solvent from Rh[C(O)Me](CO)(triphos) always generated small amounts (5% or less) of the methyl carbonyl.

Thaler et al.

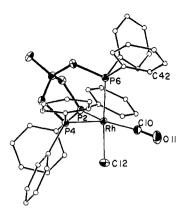


Figure 1. ORTEP drawing of non-hydrogen atoms for RhMe(CO)(triphos), showing selected atom labeling.

Table II. Selected Bond Distances (Å) and Angles (Deg) for $MeC(CH_2PPh_2)_3Rh(CH_3)CO$

Distances					
Rh(1) - P(2)	2.3683 (12)	Rh(1)-C(10)	1.878 (6)		
Rh(1) - P(4)	2.3446 (14)	Rh(1)-C(12)	2.204 (7)		
Rh(1)-P(6)	2.3135 (14)	O(11)-C(10)	1.144 (7)		
Angles					
P(2)-Rh(1)-P(4)	90.80 (5)	P(4)-Rh(1)-C(12)	94.87 (21)		
P(2)-Rh(1)-P(6)	87.14 (5)	P(6)-Rh(1)-C(10)	97.63 (19)		
P(2)-Rh(1)-C(10)	138.13 (19)	P(6)-Rh(1)-C(12)	175.78 (21)		
P(2)-Rh(1)-C(12)	93.54 (16)	C(10)-Rh(1)-C(12)	79.09 (25)		
P(4)-Rh(1)-P(6)	89.28 (5)	Rh(1)-C(10)-O(11)	173.1 (5)		
P(4)-Rh(1)-C(10)	130.64 (18)				

CD₂Cl₂, 22 °C): δ 11.5 (br d, J_{RhP} = 106 Hz). ³¹P{¹H} MMR (THF, -90 °C): δ 7.8 (dd, J_{PP} = 40 Hz, J_{PRh} = 123 Hz, 2 P), 23 (dt, J_{PRh} = 85 Hz, 1 P). 1R (CH₂Cl₂) 1900 cm⁻¹. X-ray-quality crystals of the *methyl* carbonyl were grown by slow evaporation of a C₆D₆ solution of Rh[C(O)Me](CO)(triphos).

Crystallography for Rh(CH₃) (CO) (triphos). A small, almost equidimensional crystal was selected by using inert atmosphere handling techniques. The crystal was transferred to the goniostat, where it was cooled to -141 °C for characterization and data collection. A systematic search of a limited hemisphere of reciprocal space yielded a set of 32 reflections that exhibited monoclinic symmetry (2/m). The systematic extinction of 0k0 for k = 2n + 1 limited the choice of possible space groups to $P2_1$ or $P2_1/m$. The choice of the noncentrosymmetric space group $P2_1$ was confirmed by the successful solution and refinement of the structure. Unit cell dimensions were determined by using 76 reflections between 21° and 42° in 2 θ . Data collection¹⁰ was undertaken as detailed in Table 1. The upper limit of the data collection range was extended to 60° since the crystal diffracted very well. A plot of the standard reflections showed no systematic trends. No correction for absorption was performed.

The structure was solved by using the usual combination of direct methods and Fourier techniques. The non-hydrogen atoms were readily located and, following initial refinement, almost all of the hydrogen atoms were evident in a difference Fourier map. The full-matrix, least-squares refinement was completed by using anisotropic thermal parameters on all non-hydrogen atoms and isotropic thermal parameters on the hydrogen atoms. Since the space group P_{21} is polar, both enantiomorphs were refined and the atomic coordinates reported here are for the preferred absolute configuration. The final difference map was essentially featureless; the largest peak was $0.63 e/Å^3$. Carbon-hydrogen separations in the phosphine ligand range from 0.64 to 1.07 Å. The results of the structural study are shown in Table II and Figures 1 and 2. Additional information is available as supplementary material.

The Rh(C(O)CH₃)(CO)(triphos)/RhMe(CO)(triphos) Equilibrium. A CD_2Cl_2 solution of Rh[C(O)CH₃)(CO)(triphos) and RhMe(CO)(triphos) (75:25) sealed in an NMR tube under vacuum was refluxed (40 °C) for 5 h to establish an equilibrium mixture. The ¹H NMR spectrum was then recorded immediately, revealing a 40:60 mixture of the two compounds. The solution was then allowed to stand at room temperature for 3 h, and the ¹H NMR spectrum was again recorded. The initial ratio (75:25) of the two compounds had been reestablished.

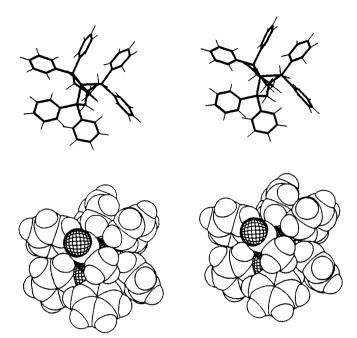


Figure 2. Stereo space-filling and stick figure drawings of RhMe-(CO)(triphos), showing contacts between CO and phenyl groups.

Rh(CH₃)(¹³CO)(triphos). This material was prepared in a manner identical with that used for Rh(CH₃)(¹²CO)(triphos), starting from Rh[¹³C(O)CH₃](¹³CO)(triphos). ¹H NMR¹¹ (360 MHz, C₆D₆, 22 °C): δ 0.75 (m, 3 H, RhMe), 1.22 (unresolved q, $J_{PH} = 2.52$ Hz, CCH₃), 2.21 (d, $J_{PH} = 6.86$ Hz, 6 H, CH₂P), 7.4–6.7 (P(C₆H₅)₂). ³¹P[¹H] NMR (146 MHz, C₆D₆, 22 °C): δ 11.3 (br dd, $J_{PRh} = 111$ Hz, $J_{PC} = 20.1$ Hz). ³¹P[¹H] NMR (CH₂Cl₂, -80 °C): δ 8.3 (dt, $J_{RhP} = 120$ Hz, $J_{PC} \simeq J_{PP}$ = 42 Hz, 2 P), 22 (m, 1 P). ¹³C[¹H] NMR (90.8 MHz, C₆D₆, 22 °C): δ 212 (dq, $J_{CRh} = 77.4$ Hz, $J_{CP} = 23.8$ Hz). **Reaction of Rh**[¹³C(O)Me](¹³CO)(triphos) with ¹²CO. A saturated C D, solution of **Rh**[¹³C(O)Me](¹³CO)(triphos) was placed in an NMP

Reaction of Rh[¹³C(**O**)**Me**](¹³CO)(**triphos**) with ¹²CO. A saturated C₆D₆ solution of Rh[¹³C(**O**)**Me**](¹³CO)(triphos) was placed in an NMR tube. The tube was frozen and evacuated, charged with ¹²CO (~1.0 atm), and flame sealed. The solution itself was intentionally not degassed to avoid formation of the decarbonylated species Rh(Me)(¹³CO)(triphos). The tube was then shaken vigorously for 2 min, and the reaction was monitored by ¹³C[¹H] NMR. The terminal ¹³CO was exchanged within 10 min. However, the acyl ¹³CO was exchanged much more slowly, and only after 13 h was a signal not present. ³¹P[¹H] NMR (146 MHz, C₆D₆, 22 °C): showed Rh[C(O)Me](CO)(triphos) (δ 4.8 (br d, dominant resonance)) along with three other broad resonances (δ –28 (br s), 8 (vbr m, 300-Hz wd), 10 (vbr m, ~200-Hz wd)). ³¹P[¹H] NMR (THF, -90 °C): showed Rh[C(O)Me]CO(triphos) and two isomers of Rh[C(O)-Me](CO)₂(η ²-triphos): δ –29.4 (s), -28 (br s), 7.62 (dd, J_{PRh} = 139 Hz, J_{PP} = 55.5 Hz, 1 P), 9.86 (dd, J_{PRh} = 72.5 Hz, 1 P), 10.8 (d, J_{PRh} = 99 Hz).

Reaction of Rh[C(O)Me](CO)(triphos) with H₂. A saturated CD₂Cl₂ solution of Rh[C(O)Me](CO)(triphos) was placed in an NMR tube. The solution was then degassed (FPT, three cycles), and the tube was charged with H₂ (~1 atm) and flame sealed. The tube was then shaken vigorously for 2 min and allowed to stand for 3.5 h, after which time the ¹H NMR spectrum showed only one metal-containing product, RhH-(CO)(triphos). ¹H NMR (360 MHz, CD₂Cl₂, 22 °C): $\delta = 8.2$ (qd, J_{PH} = 35 Hz, J_{RhH} = 13 Hz, RhH), 1.47 (unresolved q, J_{PH} = 2.16 Hz, CCH₃), 2.18 (d, J_{PH} = 7.9 Hz, CH₂P), 7.5–6.95 (P(C₆H₃)₂). ³¹P[¹H] NMR (146 MHz, CD₂Cl₂, 22 °C): $\delta = 16$ (d, J_{RhP} = 116 Hz). IR (CH₂Cl₂): 1890, 1910 cm⁻¹. Also present in the ¹H NMR spectrum were signals for CH₃C(O)H at $\delta = 9.75$ (q, J_{HH} = 2.5 Hz) and 2.16 (d, buried underneath CH₂ protons of the phosphine ligand). Attempted Reaction of Rh[C(O)Me](CO)(triphos) with RhH(CO)-

Attempted Reaction of Rh[C(O)Me](CO)(triphos) with RhH(CO)-(triphos). Rh[C(O)Me](CO)(triphos) and RhH(CO)(triphos) were both generated separately from equimolar amounts of $RhMe_3(triphos)$ (0.04 g, 0.05 mmol) and $RhH_3(triphos)$ (0.038 g, 0.05 mmol) and carbon monoxide (vide infra). They were then combined by dissolving each in CH_2Cl_2 and placing the resulting solutions in an NMR tube. The solu-

⁽¹⁰⁾ Huffman, J. C.; Lewis, L. N.; Caulton, K. G. Inorg. Chem. 1980, 19, 2755.

⁽¹¹⁾ The ¹H NMR chemical shifts for the Rh compounds presented here are extremely solvent dependent. This is especially true for functionalities bound to the Rh atom. For example, the RhMe resonance of RhMe(CO)-(triphos) comes at -0.12 ppm in CH₂Cl₂, 0.02 ppm in THF, and 0.75 ppm in C₆D₆.

tion was then degassed (FPT, three cycles), and the tube was sealed under vacuum. ^{31}P NMR showed no reaction after 72 h. 12

Reaction of RhMe(CO)(triphos) with H₂. A saturated C₆D₆ solution of RhMe(CO)(triphos) was placed in an NMR tube. The solution was then degassed (FPT, three cycles) and placed under H₂ (1 atm). The tube was then submerged in a liquid nitrogen bath to reduce the pressure and flame sealed. The solution was warmed to room temperature, shaken vigorously for 5 min, and allowed to stand 4 h, after which time ¹H and ³P NMR showed RhH(CO)(triphos) (70% conversion) and methane (¹H NMR (C₆D₆): δ 0.152).

Reaction of RhMe(CO)(triphos) with ¹³CO. A saturated C₆D₆ solution of RhMe(CO)(triphos) was placed in an NMR tube and degassed (FPT, three cycles). The tube was then charged with ¹³CO (~1 atm), flame sealed, and shaken vigorously for 20 min. ¹³C[¹H] NMR (126 MHz, C₆D₆, room temperature) showed a broad resonance for dissolved ¹³CO at 187 ppm and four very broad (>400-Hz wd) resonances between 202 and 191 ppm; also present was a doublet of multiplets at 234 ppm. ³¹P[¹H] NMR (146 MHz, C₆D₆, 22 °C): δ 10.9 (dt, J_{PRh} = 97 Hz, J_{PP} = 22 Hz), 7.8 (vbr m, 200-Hz wd), -23.4 (s), -26.8 (s).

Reaction of RhMe(13 CO)(triphos) with RhH₃(triphos). RhMe-(13 CO)(triphos) was prepared as previously stated, starting from RhMe₃(triphos) (0.082 g, 0.106 mmol). 31 P showed this material to be mostly RhMe(13 CO)(triphos) containing <5% Rh[13 C(O)Me](13 CO)-(triphos). To this material in C₆D₆ (0.5 mL) was added RhH₃(triphos) (0.077 g, 0.106 mmol). This solution was transferred to an NMR tube and degassed, and the tube was flame sealed. After 2 h at 25 °C, the 31 PlH} NMR spectrum showed resonances for RhH₃(triphos), RhMe-(13 CO)(triphos), and RhH(13 CO)(triphos). The resonance for Rh[13 CO)(triphos) was no longer present. The spectrum showed no change after 6 days.¹²

Reaction of RhH₃(triphos) with CO. (a) RhH₃(triphos) (0.04 g, 0.05 mmol) was dissolved in a minimum amount of CD_2Cl_2 and placed in an NMR tube. The solution was degassed (FPT, three cycles) and frozen in a liquid nitrogen bath. The tube was then charged with CO (~1 atm) and flame sealed. Upon thawing of the solution, it immediately turned bright yellow, indicating the formation of RhH(CO)(triphos). The ¹H NMR spectrum (500 MHz, 22 °C) revealed RhH(CO)(triphos) (100%) and also indicated the presence of H₂ (4.6 ppm) and on unidentified resonance at 10.02 ppm.

(b) RhH₃(triphos) was placed in C_6D_6 (0.4 mL), and the solution was transferred to an NMR tube. The solution was then degassed (FPT, three cycles), the tube was charged with CO (~1 atm) and flame sealed, and the solution was shaken vigorously for 15 min. After an additional 20 min, the ¹H NMR spectrum again showed the production of RhH-(CO)(triphos) (100%) and the unidentified resonance at 9.68 ppm.

Reaction of RhH₃(triphos) with ¹³CO. This reaction was performed in a manner identical with that reported above for ¹²CO. ¹H NMR (500 MHz, CD₂Cl₂, 22 °C) for RhH(¹³CO)(triphos): δ -8.23 (qdd, J_{PH} = 34.4 Hz, J_{RhH} = 14 Hz, J_{CH} = 4.4 Hz, RhH), 1.47 (q, J_{PH} = 2.65 Hz, CCH₃), 2.17 (d, J_{PH} = 7.54 Hz, CH₂P), 7.5-6.95 (m, P(C₆H₃)₂). ³¹Pl¹H} NMR (146 MHz, CD₂Cl₂, 22 °C): δ 17.5 (dd, J_{RhP} = 115.7 Hz, J_{PC} = 21.2 Hz). ¹³Cl¹H} NMR (90.8 MHz, CD₂Cl₂, 22 °C): δ 210.5 (dq, J_{RhC} = 75 Hz, J_{PC} = 21 Hz). Also present in the ¹H NMR spectrum were signals at δ 10.01 (d, J_{CH} = 174.28 Hz) and 4.6 (H₂). For comparison, *sym*-trioxane in CDCl₃ has a chemical shift of 5.1 ppm.

Reaction of RhD₃(triphos) with CO. A saturated CH_2Cl_2 solution of RhD₃(triphos) was placed in an NMR tube. This solution was degassed (FPT, three cycles) and placed under an atmosphere of CO. The tube was then submerged in a liquid N₂ bath to reduce the pressure and flame sealed. Upon thawing of the solution and shaking the tube, the solution immediately turned bright yellow. ²H NMR again showed the unidentified resonance at δ 10.04 and ²H₂ (δ 4.65).

Reaction of RhH₃(triphos) with Synthesis Gas. (a) RhH₃(triphos) (0.021 g, 0.029 mmol) was placed in C_6D_6 (0.4 mL). The solution was then transferred to an NMR tube, which was subsequently charged with a CO/H₂ (1 atm, 50:50) mixture. The ¹H NMR spectrum revealed RhH(CO)(triphos) (100%) and no increase in the unidentified resonance at 9.68 ppm.

(b) \dot{RhH}_3 (triphos) (0.026 g, 0.036 mmol) was placed in C₆D₆ (1.5 mL). The solution was then transferred to a high-pressure reaction vessel, which was subsequently charged with a CO/H₂ (50:50, 500 psi) mixture. The vessel was then heated to 75 °C for 4.5 h. No pressure decrease was noted during this period. The pressure was then released, yielding a bright yellow solution. The ¹H NMR spectrum showed RhH(CO)(triphos) (100%) but again no increase in the resonance at 9.68 ppm.

Attempted Reaction of RhH(CO)(triphos) with H_2 . RhH₃(triphos) (0.05 g, 0.07 mmol) was dissolved in a minimum amount of C_6H_6 (10 mL) and placed under an atmosphere of CO. The solution immediately turned bright yellow, indicating the formation of RhH(CO)(triphos), and the solution was stirred an additional 10 min to ensure complete conversion. The solution was then transferred to a high-pressure reaction vessel, which was subsequently charged with H₂ (1600 psi). The solution was stirred for 4 h, after which time the H₂ pressure was released. The ³¹P NMR spectrum showed only resonances for RhH(CO)(triphos).

Exchange of RhH(CO)(triphos) with D₂. RhH(CO)(triphos) was generated in situ from RhH₃(triphos) (0.04 g, 0.055 mmol) and CO in C₆D₆. This solution was then placed in an NMR tube, and the tube was charged with D₂ (\sim 1 atm) and flame sealed. The ¹H NMR spectrum showed only a very weak hydride signal after 45 min. The ¹H NMR signal for the hydride ligand in RhH(CO)(triphos) had completely disappeared after 3 h.

Exchange of RhH₃(triphos) with D₂. A C₆D₆ solution of RhH₃(triphos) (0.04 g) was placed in an NMR tube and degassed. The tube was then charged with ~ 1 atm of D₂ and flame sealed. After 6 h, ³¹P NMR showed a broad doublet at δ 25.7, indicating deuterium incorporation. After 18 h, no RhH signal was observable by ¹H NMR, indicating complete production of RhD₃(triphos).

Exchange of RhH(¹³CO)(triphos) with ¹²CO. RhH(¹³CO)(triphos) was synthesized as reported previously and placed in C_6D_6 in an NMR tube. The solution was then degassed and placed under ¹²CO (~1 atm), and the tube was flame sealed. The tube was then shaken vigorously for 5 min. Only signals for RhH(¹²CO)(triphos) were observed by ¹H NMR.

Hydroformylation of 1-Hexene with RhH(CO)(triphos). RhH₃(triphos) (0.0195 g, 0.027 mmol) was converted to RhH(CO)(triphos) by placing it in C₆D₆ (1 mL) and stirring under CO for 1 h. The solution of RhH(CO)(triphos) was then transferred to a high-pressure reaction vessel, and 1-hexene (0.45 g, 5.3 mmol) was added. The reaction vessel was then charged with H₂/CO (50:50; 1200 psi), and the reaction was stirred for 18 h. After this time, the pressure was released and the reaction checked by ¹H NMR and gas chromatography. No appreciable reaction was evident. The vessel was then recharged with H₂/CO (50:50; 900 psi) and heated to 67 °C for 1.75 h. The pressure was the released. Gas chromatography indicated the production of *n*-heptanal (0.75 mmol), 2-methylhexanal (0.095 mmol), and 2-hexenes (0.053 mmol). The ¹H NMR spectrum (500 MHz, C₆D₆, 22 °C) showed mostly 1-hexene, but also present were signals for *n*-heptanal (9.31 ppm, t, $J_{HH} = 1.7$ Hz) and 2-methylhexanal (9.278 ppm, d, $J_{HH} = 1.8$ Hz).

Reaction of RhH(CO)(triphos) with Ethylene. An NMR tube containing a saturated C_6D_6 solution of RhH(CO)(triphos) was degassed and placed under 1 atm of ethylene. The ethylene was condensed by using liquid nitrogen, and the NMR tube was flame sealed. Within 18 h, the hydride resonance was totally consumed. At 36 h, ³¹P NMR revealed 98% consumption of RhH(CO)(triphos) and the formation of three major resonances: δ 10.2 (vbr m), 5 (br d, J_{RhP} = 109 Hz), and -1 (vbr m).

Attempted Reaction of RhH(CO)(triphos) with Styrene. RhH₃(triphos) (0.083 g, 0.11 mmol) was placed in C_6D_6 (0.5 mL), degassed, and placed under an atmosphere of CO. The solution was stirred for 45 min to ensure complete conversion to RhH(CO)(triphos). To this solution was added styrene (0.0118 g, 0.11 mmol). After 3 h of stirring at 25 °C, no reaction had occurred (as determined by ¹H NMR). The mixture was then refluxed for 3 h. Again, no reaction was noted.

Results

Synthesis and Characterization of RhMe₃(triphos). Under carefully controlled conditions, RhMe₃(triphos) may be obtained in good yield (75%) from the reaction of excess MeLi and RhCl₃(triphos) in tetrahydrofuran. Isolated pure samples of RhMe₃(triphos) are nearly colorless and hydrocarbon solutions (and the solid) are stable under N₂. Proton and ³¹P NMR patterns and integrations are fully consistent with the formula given, with exclusively a *facial* octahedral structure. The rhodium/phosphorus coupling constant of 75 Hz for RhMe₃(triphos) is significantly reduced in comparison to RhCl₃(triphos) (104 Hz) and RhH₃-(triphos) (89 Hz). These spectral data agree with those recently reported for RhMe₃(triphos) from a different synthesis.^{13c}

Reactivity of RhMe₃(triphos). (a) Toward CO. RhMe₃(triphos) reacts with CO at 1 atm over the course of days (or in 6 h at 1600 psi CO) to eliminate 1 mol of acetone and produce the acetyl compound Rh[C(O)Me](CO)(triphos). It is important to note that under no condition was the formation of ethane ever observed.

⁽¹²⁾ The reactants began to degrade significantly after this time.

^{(13) (}a) Mercer, W. C.; Geoffroy, G. L. Organometallics 1985, 4, 1418.
(b) Bonnesen, P. V.; You, P. K. L.; Hersch, W. H. Organometallics 1987, 6, 1587.
(c) Johnston, G. G.; Baird, M. C. Organometallics 1989, 8, 1894.

This molecule exhibits one terminal carbonyl and one acetyl infrared stretch. The ¹³C{¹H} NMR spectrum shows a doublet of quartets at 208 ppm for the terminal carbonyl and a doublet of quartets at 258 ppm for the acetyl carbonyl, both of which are in the range of chemical shift values reported for such functionalities¹³ and consistent with the values recently reported for this species.^{13c} As implied by these quartets, the molecule is fluxional (P site exchange): the ³¹P NMR spectrum is a broad doublet at 22 °C but shows a 2:1 intensity pattern at -90 °C. All these data are consistent with structure I for this molecule.

In the absence of CO, Rh[C(O)Me](CO)(triphos) is readily decarbonylated, both in the solid state (very slowly) and in solution, to yield RhMe(CO)(triphos).^{13c} This is undoubtedly an intermediate on the reaction pathway to the acetyl complex since in the presence of stoichiometric amounts of CO in solution, RhMe(CO)(triphos) rapidly (<3.5 h) reverts back to the Rhacetyl complex. The Rh-methyl proton resonance of RhMe-(CO)(triphos) displays coupling to both phosphorus and rhodium. The quartet coupling to phosphorus suggests a fluxional molecule (rapid P site exchange). The room temperature ³¹P NMR shows only a very broad doublet; however, at -90 °C the spectrum shows the pattern of an A2BX spin system. Since the unique phosphorus atom displays the smaller J_{RhP} value, it was proposed to be situated trans to the methyl group in a trigonal-bipyramidal ground-state structure. To verify this structural assignment, an X-ray structural study was performed.

The molecule is reasonably well described as being trigonal bipyramidal, subject to the geometric constraints of the triphos ligand. The CO ligand is equatorial and the methyl group is axial. In particular, the P-Rh-P angles are all within the typical¹⁴ narrow range 87.14 (5)-90.80 (5)°, and thus the angles in the equatorial plane about Rh are significantly different from 120°: the angles C(O)-Rh-P are 130.64 (18) and 138.13 (19)°. In spite of these distortions, the equatorial plane is rigorously planar; the angles sum to 359.6°. The axial/axial angle P(6)-Rh-C(12) is nearly ideal at 175.78 (4)°. As in Ir(CO)Cl(triphos),⁷ the P_{axial}-Rh distance is shorter than the two P_{equatorial}-Rh distances. This clearly shows that J_{P-Rh} values (larger to the equatorial phosphorus) do not correlate with bond length but rather with orbital hybridization.

The Rh-CO distance (1.878 (6) Å) is much shorter than the Rh-CH₃ distance (2.204 (7) Å). The H₃C-Rh-CO angle, at 79.09 (25)°, is both small and notably smaller than the Cl-Ir-CO angle (86.0 (6)°) in Ir(CO)Cl(triphos). In addition, the Rh-C-O angle is noteworthy at 173.1 (5)°. Such bending may be in response to the encroachment on the CO by phenyl ring hydrogens (e.g., C(42)H(37)···C(10) = 2.78 (9) Å and C(42)H(37)···O(11) = 2.86 (8) Å. This is evident in a space-filling model (Figure 2).

(b) Toward H_2 . The reaction of RhMe₃(triphos) with CO must involve some preequilibrium creation of a 16-electron complex. Since no ethane is produced in this reaction, we rule out eq 2 as

$$RhMe_3(triphos) \approx RhMe(triphos) + C_2H_6$$
 (2)

the operative preequilibrium. We are left to consider the possibility of phosphine arm dissociation (eq 3) and to seek additional support

$$RhMe_3(\eta^3 - triphos) \rightleftharpoons RhMe_3(\eta^2 - triphos)$$
 (3)

for its occurrence. Reasoning that an "arm-off" process would cause loss of P-Rh coupling in the ${}^{31}P{}^{1}H{}$ NMR, we recorded the spectrum of RhMe₃(triphos) at 60 °C in benzene. A doublet remains at this temperature. This sets an upper limit on the rate

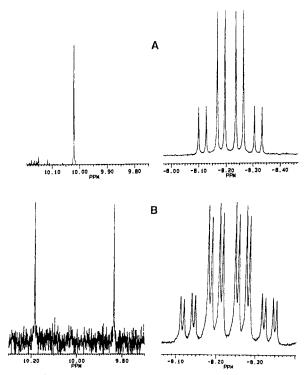


Figure 3. ¹H NMR (CD_2Cl_2) resonances for the CO hydrogenation product and the hydride of RhH(CO)(triphos) from the reaction of CO and RhH₃(triphos): (A) from natural-abundance CO; (B) from ¹³CO.

of any arm-off process as less than $\sim 10^2$ s⁻¹.

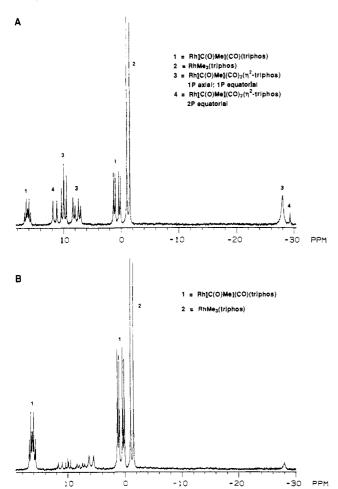
We next sought to trap the proposed η^2 -triphos transient with H₂. If RhMe₃(triphos) is placed under 1 atm of H₂, after a very short time (2 h) ¹H NMR reveals significant production of RhH₃(triphos), methane, and trace amounts of ethane. After 16 h, 50% of the RhMe₃(triphos) has been converted to RhH₃-(triphos), with no detectable change in the ratio of methane to ethane concentration. This result strongly supports the participation of a RhMe₃(η^2 -triphos) intermediate. The production of traces of ethane in this hydrogenolysis reaction is surprising and contrasts to the reaction of CO and RhMe₃(triphos), which never evolves ethane.

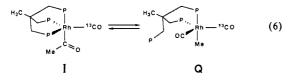
Reactivity of RhH₃(**triphos**) with CO. The facile reaction of RhMe₃(triphos), a d⁶ octahedral system anticipated to be kinetically inert, with carbon monoxide to yield only acetone and no ethane prompted a reinvestigation of the reaction between RhH₃(triphos) and carbon monoxide in CH₂Cl₂. We confirm the previous⁷ report that this reaction leads exclusively to the formation of RhH(CO)(triphos), and we have established H₂ as one coproduct (eq 4). Since we were interested in possible CO hy-

 $RhH_3(triphos) + CO \rightarrow RhH(CO)(triphos) + H_2 + ?$ (4)

drogenation in this reaction, it is of interest that a minor (<5%)additional product was also observed as a ¹H NMR singlet at 10.02 ppm. The resonance for this unidentified species is quite weak but is also produced when the reaction is run in C_6D_6 (δ 9.68), indicating it is not a product of reaction with CD_2Cl_2 . The fact that this product is wholly CO derived is verified by employing ¹³CO in the reaction with RhH₃(triphos). Figure 3 shows the change in both the unidentified ¹H signal (d, δ 10.02, $J_{CH} = 174$ Hz) and the hydride signal of RhH(CO)(triphos) when ¹²CO is replaced by 13 CO in eq 4. To ascertain that the resonance at 10.02 ppm originated from the hydride ligands of RhH₃(triphos), the reaction in eq 4 was performed starting with RhD₃(triphos). Indeed the resonance was present in the ²H NMR (CH_2Cl_2 , δ 10.04), together with evolved D₂. Independent experiments show no net reaction of RhH(CO)(triphos) with H₂ even at 1600 psi. This suggests that the unidentified resonance is not somehow derived from the hydrido carbonyl species and liberated H₂. In an attempt to determine whether or not the material giving rise to the resonances at 10 ppm was volatile, the products from a

^{(14) (}a) Sacconi, L.; Mani, F. In Transition Met. Chem. 1982, 8, 179. (b) DiVaira, M.; Sacconi, L. Angew. Chem., Int. Ed. Engl. 1982, 21, 330.




Figure 4. ${}^{31}P{}^{1}H{} NMR$ (THF, -90 °C) spectra: (A) of Rh[C(O)-Me](CO)(triphos) + CO; (B) generated by removal of CO atmosphere from NMR tube in spectrum A.

reaction between RhH₃(triphos) and CO in CD₂Cl₂ were vacuum transferred to an NMR tube. The ¹H NMR spectrum of the resulting solution showed no resonance at 10.02 ppm. This suggests that the unknown compound is coordinated to rhodium. Attempts to produce greater amounts of the unidentified material by reacting RhH₃(triphos) with CO in the presence of added H₂ or by placing RhH(CO)(triphos) under 500 psi of an H₂/CO mixture showed no increase in yield.

Reactivity of Rh[C(O)Me](CO)(triphos) (I) and RhMe(CO)(triphos) (II). (a) With CO. To gain further mechanistic insight into the lability of the triphos ligands (but now on Rh(I)), several exchange reactions were carried out. As mentioned above, Rh[C(O)Me](CO)(triphos) (I) and RhMe(CO)(triphos) (II) are readily interconverted by the removal or addition of 1 equiv of CO (eq 5). Both I and II also show rapid exchange (i.e., minutes)

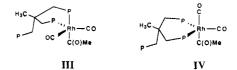
$$\frac{\text{Rh}[C(O)Me](CO)(\text{triphos})}{I} \xrightarrow{\frac{-CO}{+CO}} \frac{\text{Rh}Me(CO)(\text{triphos})}{II}$$
(5)

between free CO and the terminal carbonyl ligand; however, I also exchanges CO into the acetyl position at a much slower rate (i.e., hours). Exchange into the acyl position proves that, even under a CO atmosphere, the methyl group of the acyl ligand must migrate to the *metal without loss of* ^{13}CO and thus encounter chemically equivalent (but isotopically distinct) CO ligands (eq 6). Again, a phosphine "arm-off" mechanism is demanded by

the data. By the principle of microscopic reversibility, we conclude

that executing eq 6 from right to left is the mechanism of carbonylation of RhMe(CO)(triphos); the mechanism is *not* a preequilibrium formation of Rh[η^2 -C(O)Me](triphos).

Formation of Q, via eq 7, is also central to accomplishing the fast exchange of ¹³CO with II. Note that this arm-off mechanism seems superior to eq 8 based on independent reasoning: the four-coordinate species RhMe(triphos), of $C_{3\nu}$ (T_d derived) symmetry, is a high-energy (possibly paramagnetic) geometry for a d⁸ configuration.


$$RhMe(CO)(triphos) \rightleftharpoons RhMe(CO)(\eta^{2}\text{-triphos}) \xleftarrow{+^{13}CO}{}$$

$$RhMe(CO)(^{13}CO)(\eta^{2}\text{-triphos}) \quad (7)$$

$$Q$$

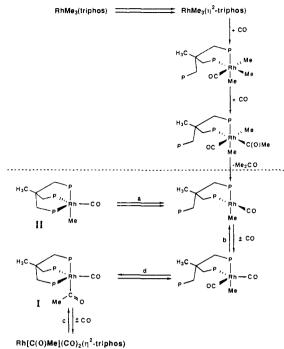
$$RhMe(CO)(triphos) \rightleftharpoons RhMe(triphos) + CO \quad (8)$$

Direct detection of an arm-off species is in fact possible. If I or II (containing ¹²CO) is placed under an atmosphere of ¹³CO, the ¹³C NMR (22 °C, C_6D_6) recorded under CO shows an acetyl resonance, enriched to the same level as the reagent ¹³CO, which is 13 ppm upfield of that of Rh[C(O)Me]CO(triphos). Also seen are four terminal carbonyl signals (202-191 ppm), each broadened by exchange with dissolved ¹³CO (which itself is broad at 187 ppm). The intensity of the acetyl resonance indicates that all ¹²CO of the reagent RhMe(CO)(triphos) has been exchanged into the pool of (excess) ¹³CO; this exchange is therefore faster than the formation of the acetyl group. The ³¹P{¹H} NMR at 22 °C also shows a variety of broad resonances, including one at δ -28 which is in the region of free triphos. The ³¹P NMR data suggested the possibility of an $Rh[C(O)Me](CO)_2(\eta^2$ -triphos) species that is fluxional at room temperature. Indeed, if I is placed under an atmosphere of $^{12}\rm{CO}$ in THF and the $^{31}\rm{P}\{^{1}\rm{H}\}$ NMR of this solution is recorded at -90 °C (Figure 4A) resonances for Rh[C(O)-Me](CO)₂(η^2 -triphos) (III) are observed [δ -28 (dangling P), 7.62 $(dd, J_{PRh} = 139 \text{ Hz}, J_{PP} = 55.5 \text{ Hz}, 1 \text{ P}), 9.86 (dd, J_{PRh} = 72.5 \text{ Hz}, 1 \text{ P})]$. It also appears that a less stable isomer IV is present $(\delta \ 10.8 \ (d, J_{PRh} = 99 \ Hz), -29.4 \ (s))$. The other resonances in

this spectrum are due to residual RhMe₃(triphos) and I as labeled. That the new species are richer in CO than Rh[C(O)Me]CO-(triphos) is established (Figure 4B) by removing the CO atmosphere from the NMR tube sample, which produced the spectrum in Figure 4A. Compound I grows at the expense of *both* III and IV. It should be mentioned that if II is placed under a ¹²CO atmosphere, the identical spectra are obtained, suggesting that CO migratory insertion occurs in <5 min.

(b) With H_2 . Both I and II also react readily (<4 h) with H_2 at atmospheric pressure to yield acetaldehyde and methane, respectively, together with the same metal complex, RhH(CO)-(triphos). While I reacts with RhH₃(triphos) to generate RhH-(CO)(triphos) by eqs 9 and 10, II shows no reaction with

$$Rh[C(O)Me](CO)(triphos) \rightarrow RhMe(CO)(triphos) + CO$$
(9)


$$RhH_3(triphos) + CO \rightarrow RhH(CO)(triphos) + H_2$$
 (10)

RhH₃(triphos) even at reaction times >1 week. These results constitute a very sensitive test of the equilibrium shown in eq 11, since any liberated H₂ from such a process would rapidly react with RhMe(CO)(triphos) (II). The persistence of II proves that RhH₃(triphos) does *not* participate in the reductive elimination process of eq 11.

$$RhH_{3}(triphos) \xrightarrow[]{H_{2}}{} RhH(triphos)$$
(11)

Hydroformylation of 1-Hexene. Because of the ease with which $Rh[C(O)CH_3](CO)(triphos)$ undergoes hydrogenation (H₂, 1 atm,

III & IV

3 h) to produce RhH(CO)(triphos) and acetaldehyde, and the fact that RhH(CO)(triphos) reacts with excess ethylene (vide infra), RhH(CO)(triphos) was tested as a hydroformylation catalyst. Using 1-hexene for ease of handling and comparison to industrial processes, we effected hydroformylation under mild conditions (eq 12). Only trace amounts of 2-hexenes (and no

RhH(CO)(triphos) + 1-hexene
$$\frac{67 \circ C/C_{4}D_{6}/2 h}{CO/H_{2} \cdot 900 \text{ psi}}$$

n-heptanal + 2-methylhexanal + 2-hexenes (trace) (12)

hexane) were produced. The normal/iso ratio for the aldehyde products was 8:1. After the hydroformylation reaction was stopped (heat removed and CO/H₂ pressure released), the solution was still bright yellow and homogeneous, but the ¹H NMR spectrum did not show any RhH resonance. This probably results from the large excess of 1-hexene present, leaving an acyl or alkyl complex as the dominant species. Attempts to model this insertion process for RhH(CO)(triphos) using styrene (refluxing in C₆D₆) led to no reaction. However, when ethylene was employed, three major (new) broad resonances were observed in the ³¹P NMR. Two of these resonances (10.2 and 5 ppm) are very close to the ³¹P (22 °C) resonances reported for RhMe(CO)(triphos) (11.5 ppm, br d, in CH₂Cl₂) and Rh[C(O)Me](CO)(triphos) (5 ppm, br d, in C₆D₆). These results suggest the products of the ethylene reaction to be RhEt(CO)(triphos) and Rh[C(O)Et](C₂H₄)(triphos).

Discussion

Synthesis of RhMe₃(triphos). While compounds of formula IrP_3Me_3 have been known for over 30 years, an early attempted synthesis of the rhodium analogue met with failure.¹⁵ Only recently have such rhodium compounds been made for $P = PMe_3^{16}$ and $PMe_2Ph.^{17}$ While this report was being prepared, RhMe₃[MeC(CH₂PPh₂)₃] was prepared from [RhCl₂(triphos)]BF₄ and MeLi.^{13e}

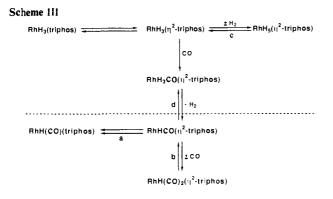
Reactivity of RhMe₃(triphos). (a) Toward CO. This 18-electron complex displays reactivity under very mild conditions. The experimental results reported here imply the existence of the network of reactions shown in Scheme I. Above the dotted line

are Rh(III) compounds; below are Rh(I) compounds. The Rh(III) arm-off mechanism is justified by the absence of ethane as a source of a 16-electron intermediate. Equilibria a and b together accomplish the rapid exchange of free and coordinated CO in RhMe(CO)(triphos). Equilibrium c accomplishes the same for the acetyl carbonyl complex. All require an arm-off process. Equilibrium d exchanges coordinated carbonyl and acetyl carbons in Rh[C(O)Me]CO(triphos).¹⁸ While this work was being prepared for publication, Johnston and Baird reported¹⁹ the detection of RhMe(CO)(PMe₃)(η^2 -triphos) by attack of PMe₃ on II, showing the generality of the kinetic importance of arm-off processes with MeC(CH₂PPh₂)₃.

(b) Toward H_2 . Additional evidence in support of a preequilibrium arm-off behavior by RhMe₃(triphos) comes from its facile hydrogenation, to generate RhH₃(triphos), methane, and traces of ethane. For such "hydrogenolysis" to occur in nonpolar solvents, the generation of a vacant coordination site is necessary. We exclude accomplishing this by reductive elimination of ethane since it would generate an intermediate (RhMe(triphos)) with approximately tetrahedral symmetry, clearly unfavorable for Rh¹. In addition, the mole ratio of ethane to methane produced in this reaction is 0.08 but should be 1.0 if reductive elimination occurred from RhMe₃(triphos). Scheme II, predicated on the arm-off preequilibrium already supported by Schemes I, outlines two possible mechanisms for hydrogenolysis of RhMe₃(triphos).

The mechanism on the right side of Scheme II involves the trapping of an η^2 -triphos intermediate by H₂ to form a dihydrogen complex; in this way, Rh(V) is avoided. This is consistent with the many octahedral d⁶ complexes of dihydrogen²⁰ and the propensity for such species to avoid the higher oxidation state in a dihydride structure. The second step of this mechanism could then proceed by a metathesis mechanism similar to that proposed

⁽¹⁵⁾ Chati, J.; Underhill, A. E. J. Chem. Soc. 1963, 2088.


⁽¹⁶⁾ Andersen, R. A.; Jones, R. A.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1978, 446.

⁽¹⁷⁾ Lundquist, E. G. Ph.D. Thesis, Indiana University, 1988.

⁽¹⁸⁾ Although the interconversion of Rh[¹³C(O)Me](CO)(triphos) and Rh[¹²C(O)Me](¹³CO)(triphos) is observed (*under 1 atm of CO*) to be slow (13 h) compared to the rate of carbonylation of RhMe(CO)(triphos) to Rh[C(O)Me](CO)(triphos), this is because of the low concentration of I under CO. The equilibrium constant for the arm-off process of I to make RhMe-(CO)($_{2}^{-}$ -triphos) is certaintly small (based on spectra of I), and thus $k_d \gg k_{-d}$.

k_{-d}. (19) Johnston, G. G.; Baird, M. C. J. Chem. Soc., Chem. Commun. 1989, 1008.

⁽²⁰⁾ Crabtree, R. H.; Hamilton, D. G. Adv. Organomet. Chem. 1988, 20, 299.

for the hydrogenation of d^0 early transition metal alkyls such as Cp_2ZrMe_2 .²¹ Alternatively, it could be considered as intramolecular proton (H⁺) transfer, since the H₂ ligand has been shown²² to exhibit Brønsted acid character. The low-yield path to ethane is not explicitly indicated in Scheme II but could arise from reductive elimination from any intermediate with at least two bound methyl groups.

Since Maitlis has recently shown the existence of a variety of Rh^{IV} and Rh^{V} organometallic species,²³ including the rhodium dihydride $Cp^{*}Rh(H)_{2}(SiEt_{3})_{2}$,^{23b} the left-hand side of Scheme II considers oxidative addition of H_{2} to generate a variety of Rh^{V} intermediates. It is attractive to hypothesize that the generation of ethane in this reaction, and not in the reaction with CO, is a result of high oxidation state (Rh^{V}) intermediates (generated from H_{2} oxidative addition) which promote reductive elimination of ethane.

Reactivity of RhH₃(**triphos**). (a) Toward CO. The production of ketone in eq 13 prompted us to reexamine the carbonylation of RhH₃(triphos) for possible hydrogenation of CO. We confirm

RhMe₃(triphos) + 3CO \rightarrow Rh(acyl)(CO)(triphos) + (H₁C)₂CO (13)

(eq 4) the production of RhH(CO)(triphos) and established the liberation of H_2 . However, this reaction consistently produces an additional material in very low yield (<2%) which has a ^{1}H NMR singlet (CD_2Cl_2) of 10.02 ppm. Repeating this reaction (eq 4) with ¹³CO split the resonance at 10.02 ppm into a doublet (Figure 3B) with a C/H coupling constant of 174 Hz. This Jvalue is very close to that of acetaldehyde (173 Hz) and that reported by Wayland²⁴ for free formaldehyde (176 Hz). If eq 4 is carried out in C_6D_6 , this resonance occurs at 9.68 ppm, whereas formaldehyde in C_6D_6 has a chemical shift of 8.68 ppm;²⁴ we have verified this value independently by generating gaseous CH_2O from paraformaldehyde and bubbling it through a C_6D_6 solution (8.67 ppm). Since the species producing this resonance does not vacuum transfer with solvent, we conclude that it is bound to rhodium. We feel that this resonance is not a metal-bound formyl for several reasons. One reason is that the resonance at 10.02 ppm is very sharp and shows no signs of unresolved coupling to either Rh or the three phosphorus nuclei (the RhCH₁ resonance for RhMe(CO)(triphos) is a quartet of doublets showing coupling to both Rh and P). Moreover, it is reported that Rh(CHO)-(CO)(triphos)²⁵ is unstable above -60 °C and gives rise to a formyl resonance at 12 ppm in THF. Unfortunately, the material causing the resonance at 10.02 ppm is produced in such low yields (even under H_2/CO mixtures) that attempts at further characterization

J. Am. Chem. Soc. 1984, 106, 5458 and references therein. (c) Saez, I. M.; Andrews, D. G.; Maitlis, P. M. J. Organomet. Chem. 1987, 334, C17. (24) Boch, H. W.; Wayland, B. B. J. Chem. Soc., Chem. Commun. 1986, 900. have been unsuccessful. We are currently exploring the possibility that the species is coordinated formaldehyde or formate.

We feel that eq 4 proceeds by an arm-off mechanism (Scheme III). Support for the arm-off preequilibrium comes from the fact that the proposed RhH₃(η^2 -triphos) can be trapped with D₂: RhH₃(triphos) exchanges with D₂. This must proceed via RhH₃D₂(η^2 -triphos) as in eq c of Scheme III.

With the conclusion that CO reacts with RhH₃(triphos) via CO attack on an arm-off transient (eq 11 has been excluded by our observations), the question arises as to why $Rh(CO)H_3$ -(η^2 -triphos) proceeds further by H₂ loss while the corresponding $Rh(CO)Me_3(\eta^2$ -triphos) does not eliminate ethane. While the latter may be due to thermodynamic factors, we suggest that the strong π acidity of CO makes Rh(CO)H₃(η^2 -triphos) a good candidate to be a dihydrogen complex because of the inability of hydrogen to maintain the $Rh(CO)(P)_2$ fragment as Rh^{111} . The species $Rh(CO)H(H_2)(\eta^2$ -triphos) would then show behavior common to dihydrogen complexes: H_2 loss. Loss of H_2 (eq d, Scheme III) is a reversible reaction, since we detect the (unfavorable) reverse reaction via isotopic exchange of D₂ with RhH-(CO)(triphos) via eqs a and d. It is thus the kinetic mobility of hydride and the availability of an intermediate (coordinated H_2) that create a reaction channel unavailable to $Rh(CO)Me_3(\eta^2 - \eta^2)$ triphos).

Reactivity of RhH(CO)(triphos). We sought to promote CO hydrogenation with RhH(CO)(triphos) by reaction with H_2 but find no detectable reaction. To test whether this failure originates in the absence of an arm-off process in RhH(CO)(triphos), we treated it with D₂. Exchange with the metal-bound hydrogen is facile,²⁶ which permits addition of a reversible reaction arrow at d in Scheme III and the conclusion that the lack of CO hydrogenation originates in thermodynamic, not kinetic, limitations of RhH(CO)(triphos). Exchange of ¹³CO with RhH(CO)(triphos) occurs by reactions a and b. However, under 1 atm of CO, ¹H and ³¹P NMR spectra show no RhH(CO)₂(η^2 -triphos). Thus, the acetyl ligand stabilizes this $RhX(CO)_2(\eta^2$ -triphos) type in a way that hydride does not. We also sought direct observation of the consequences of phosphine arm dissociation via loss of P/Rh spin coupling. However, at +60 °C in C₆D₆, RhH(CO)(triphos) showed only slight broadening of the components of its 117-Hz doublet in the ³¹P{¹H} NMR spectrum. The rate of eq a at 60 °C is therefore $<10^2$ s⁻¹.

Reactivity of RhMe(CO)(triphos) and Rh[C(O)Me](CO)-(**triphos)**. The intermediates in Scheme I suffice to explain the rapid exchange of these Rh(I) species with ¹³CO. Since each of these is in equilibrium with a 16-electron arm-off transient, reaction with H₂ to liberate aldehyde and alkane follows naturally from the species available in Scheme I. The production of acetaldehyde, not methane, from Rh[C(O)Me](CO)(triphos) indicates that Rh[C(O)Me](CO)(η^2 -triphos) is formed and trapped faster by hydrogenation than I disappears by reaction d of Scheme I. Since a central question in olefin hydroformylation chemistry is whether aldehyde forms by reaction of H₂ with an acyl complex or by a reaction between two metal complexes (e.g., eq 14), we

$$Co[C(O)R](CO)_4 + HCo(CO)_4 \rightarrow RC(O)H + Co_2(CO)_8$$
(14)

were pleased to have one pathway (the former) clearly established in the Rh/triphos system. We did test the reaction of Rh[C-(O)Me](CO)(triphos) with RhH(CO)(triphos), and find no reaction.

Against this background, we proceeded to test RhH(CO)-(triphos) as a possible olefin hydroformylation catalyst. Indeed, this is successful. RhH(CO)(triphos) in the presence of CO and H₂ (50:50) effectively converts 1-hexene to *n*-heptanal and 2methylhexanal in an 8:1 ratio under relatively mild conditions (67 °C, 900 psi). Isomerization to 2-hexene occurs to only a small extent. The results reported here are similar to those reported by Bianchini et al. for the hydroformylation of 1-hexene as outlined

^{(21) (}a) Couturier, S.; Gautheron, B. J. Organomet. Chem. 1978, 157, C61. (b) Couturier, S.; Tainturier, G.; Gautheron, B. J. Organomet. Chem. 1980, 195, 291.

⁽²²⁾ Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1987, 109, 5865.
(23) (a) Ruiz, J.; Bentz, P. O.; Mann, B. E.; Spencer, C. M.; Taylor, B. F.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1987, 2709. (b) Fernandez, M.; Bailey, P. M.; Bentz, P. O.; Ricci, J. S.; Koetzle, T. F.; Maitlis, P. M. J. Am. Chem. Soc. 1984, 106, 5458 and references therein. (c) Saez, I. M.; Andrew M. S. M.; Bailey, D. M. J. Martin, P. M. J. Chem. Soc. 1987, 109, 5865.

⁽²⁵⁾ Johnston, G. G.; Baird, M. C. J. Organomet. Chem. 1986, 314, C51.

⁽²⁶⁾ Exchange, which is complete within 3 h, is faster than it is for RhH_3 (triphos).

in eq 15.27 Their system produces a linear:branched aldehyde

RhH(C₂H₄)(triphos) + 1-hexane
$$\xrightarrow{100 \circ C/3 h/CO/H_2/450 psi}$$

-CH₃CH₂CHO
n-heptanal + 2-methylhexanal (15)

ratio of 4. The fact that propionaldehyde is liberated to this reaction suggests that both systems involve the same catalytic species. The high selectivity for the linear aldehyde reported here using RhH(CO)(triphos) as the catalyst is most likely a result of the lower temperature employed here (65 °C) as compared to 100 °C with RhH(C₂H₄)(triphos). The high selectivity for linear aldehyde in the hydroformylation of 1-hexene with RhH(CO)-(triphos) mimics that for RhH(CO)(PPh₃)₃ in the presence of a large excess of PPh₃. This suggests that triphos fairly effectively mimics the excess PPh₃ and is undoubtedly a direct result of the chelating ability of triphos and its steric bulk (i.e., compare the structure of RhMe(CO)(triphos)).

Conclusions

The reactivity of RhH_3 (triphos) toward either H_2 or CO is significantly higher than that of $RhMe_3$ (triphos) (eq 16–19). This

RhMe₃(triphos) + CO
$$\xrightarrow{1600 \text{ psi}}_{6 \text{ h}}$$

Rh[C(O)Me](CO)(triphos) + Me₂CO (16)

RhMe₃(triphos) + H₂
$$\xrightarrow[16h]{16h}$$

RhH₃(triphos) + CH₄ + trace C₂H₆ (17)
50%

$$RhH_3(triphos) + CO \xrightarrow{1 \text{ atm}} RhH(CO)(triphos) + H_2$$
 (18)

$$RhH_3(triphos) + D_2 \xrightarrow{1 \text{ atm}} RhD_3(triphos)$$
 (19)

is probably a result of several factors. The ligand with the higher trans-effect ability, H⁻, should more readily generate the 16e⁻ η^2 -triphos species necessary for nucleophilic attack. Secondly, the approach of an incoming ligand in these reactions will be sensitive to the diminished steric demands of the three hydride ligands, as compared to the three methyl ligands; the rate of trapping of the arm-off transient RhX₃(η^2 -triphos) is thus influenced by X. We have already seen that steric crowding exists in RhMe(CO)(triphos), and that in RhMe₃(triphos) is undoubtedly greater. Also clearly assisting the reactions of RhH₃(triphos) is the facile reductive elimination of H₂ subsequent to nucleophilic attack; ethane reductive elimination is only observed to a small extent in the reaction between H₂ and the trimethyl complex.

Phosphine arm dissociation has been proposed previously for reactions of triphos metal complexes,^{7,28} but direct evidence was

lacking. While we initiated these studies with the (now verified) expectation that triphos would eliminate phosphine redistribution reactions (eq 1), we underestimated the mechanistic importance of transients where one phosphine arm dissociates. The question thus arises as to why one Rh-P bond is so labile. We feel that a partial answer is contained in the structural parameters of RhMe(CO)(triphos). Triphos is not well suited to the trigonal-bipyramidal geometry of Rh(I). This is evident in the "pinched" (90.8°) angle between the equatorial phosphines. In becoming η^2 , the tridentate phosphine can open up to an acceptable six-membered ring²⁹ on planar Rh(I). Since rhodium-phosphorus bond cleavage on Rh(III) cannot be due to angle strain in an octahedron, the reason there probably lies more in the unattractive tetrahedral geometry in the alternative reductive elimination product $(\eta^3$ -triphos)RhX as well as the trans effect of the hydride and methyl ligands. We have reported an example of dissociation of phosphine from RhClMe₂(PMePh₂)₃. It may be that diminished back-bonding to phosphine-Rh(III) contributes also.

The generality of arm-off processes appears to extend even to $P(C_2H_4PPh_2)_3$, where RhCH₃(tetraphos) has been shown³⁰ to form RhCH₃(CO)(η^3 -tetraphos) at -60 °C.

This work provides the opportunity to compare semiquantitatively the barrier to stereochemical nonrigidity of four related five-coordinate complexes.³¹ While RhMe(CO)(triphos), Rh-[C(O)Me](CO)(triphos), and the isomeric Rh[C(O)Me]-(CO)₂(η^2 -triphos) species can all be frozen out by ³¹P NMR at -90 °C, RhH(CO)(triphos) cannot. This higher mobility of hydride than alkyl and acetyl ligands is a poorly understood but general phenomenon worthy of theoretical investigation. The fact that any of these triphos complexes could be frozen out is surprising, since Dahlenburg has shown³² that, among tridentate phosphine ligands attached to Rh(I), MeC(CH₂PPh₂)₃ gives a uniquely *low* barrier to pseudorotation.

Acknowledgment. This work was supported by the National Science Foundation and Johnson Matthey. We thank M. Baird for a useful discussion and S. Horn for skilled technical assistance.

Supplementary Material Available: Tables giving full crystallographic details, anisotropic thermal parameters, and atomic positional parameters for RhMe(CO)(triphos) (5 pages); listing of observed and calculated structure factors for RhMe(CO)-(triphos) (13 pages). Ordering information is given on any current masthead page.

(31) Such fluxionality is not dependent on the arm-off process discussed here, since the activation energy for arm dissociation greatly exceeds that of fluxionality.

(32) Dahlenburg, L.; Mirzaei, F. Inorg. Chim. Acta 1985, 97, L1.

⁽²⁷⁾ Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Fujiwara, Y.; Jintoku, T.; Taniguchi, H. J. Chem. Soc., Chem. Commun. 1988, 299.

⁽²⁸⁾ Siegl, W. O.; Lapporte, S. J.; Collman, J. P. Inorg. Chem. 1971, 10, 2158.

⁽²⁹⁾ Numerous triphos/metal complexes have η^2 ground states. See: (a) Kirchner, R. M.; Little, R. G.; Tau, K. D.; Meek, D. W. J. Organomet. Chem. **1978**, 149, C15. (b) Mason, R.; Meek, D. W. Angew. Chem., Int. Ed. Engl. **1978**, 17, 183.

⁽³⁰⁾ Bianchini, C.; Masi, D.; Meli, A.; Peruzzini, M.; Zanobini, F. J. Am. Chem. Soc. 1988, 110, 6411.